Solutions Exam
SOLID MECHANICS (NASM)
November 2, 2022, 15:00-17:00 h

Question 1

a. Continuity of tractions on the interface translate into continuity of the stress components $\sigma_{i 2}(i=1, \ldots, 3)$ by virtue of $t_{i}=\sigma_{i j} n_{j}=\sigma_{i 2}$.
b. No, since shear stresses can only be traced back to differences between principal stresses.

Question 2

In bending, every fiber parallel to the neutral axis is uniaxial tension, so that $U=\frac{1}{2} \int_{B} \sigma_{11} \varepsilon_{11} d V$, yet with both σ_{11} and ε_{11} depending linearly on x_{2} :

$$
\sigma_{11}=E \varepsilon_{11} \text { with } \varepsilon_{11}=\kappa x_{2}=w^{\prime \prime} x_{2}
$$

The volume integral in the foregoing expression for U can be expanded as

$$
U=\frac{1}{2} \int_{0}^{l} E\left(w^{\prime \prime}\right)^{2}\left\{\int_{A} x_{2}^{2} d x_{2} d x_{3}\right\} d x_{1}=\frac{1}{2} \int_{0}^{l} E I\left(w^{\prime \prime}\right)^{2} d x_{1}
$$

which leads to the postulated expression in (1) when one recalls the beam bending equation $M=E I w^{\prime \prime}$ and simplifies x_{1} to just x.

Question 3

a. The schematic below (left-hand side) shows the free-body diagrams of the legs of the spring. From this, we see that AB is a beam with a constant bending moment $2 F L$ (forget-me-not type 1), while BC can be seen as a cantilever with end force F (forget-me-not type 2) which is rotated at B by the end rotation θ_{B} of $A B$. The remaining leg of the spring is just under a compressive force, whose elongation we can neglect. The vertical displacement $2 L \theta_{\mathrm{B}}+w_{\mathrm{BC}}$ of C should therefore be equal to the opening h.

According to the forget-me-nots,

$$
\theta_{\mathrm{B}}=\frac{2 F L \times 2 L}{E I}=\frac{4 F L^{2}}{E I}, \quad w_{\mathrm{BC}}=\frac{F(2 L)^{3}}{3 E I}=\frac{8 F L^{3}}{3 E I}
$$

so that

$$
h=2 L \theta_{\mathrm{B}}+w_{\mathrm{BC}}=\frac{8 F L^{3}}{E I}+\frac{8 F L^{3}}{3 E I}=\frac{32 F L^{3}}{3 E I}
$$

Conversely,

$$
F=\frac{3 E I h}{32 L^{3}}
$$

b. With the aid of the beam equation (3.49) the integral can be simplified to

$$
U=\int \frac{M(x)^{2}}{2 E I} d x
$$

so that we only need to know $M(x)$ and integrate:

FMN	$M(x)$	U
1	M	$\int_{0}^{l} \frac{(M)^{2}}{2 E I} d x=\frac{M^{2} l}{2 E I}$
2	$F(l-x)$	$\int_{0}^{l} \frac{F^{2}(l-x)^{2}}{2 E I} d x=\frac{F^{2} l^{3}}{6 E I}$

c. The results from (b) per leg of the spring:

leg	FMN	loading	U
AB	1	2 FL	$\frac{4 F^{2} L^{3}}{E I}$

BC $2 \mathrm{~F} \quad \frac{4 F^{2} L^{3}}{3 E I}$
add up a total stored energy of $16 F^{2} L^{3} / 3 E I$ which is $\equiv \frac{1}{2} F h$ as it should for an elastic system (without friction).

Question 4

Start out by introducing the base vector, say, e_{3} in the vertical direction, so that the non-zero component of the stress tensor is $\sigma_{33}=\sigma$. The resolved shear stress τ_{R} is found by substitution of $\sigma_{i j}$ into the definition of the resolved shear stress

$$
\tau_{R}=s_{i} \sigma_{i j} m_{j}=s_{3} \sigma m_{3}
$$

Here, m_{3} is the component of the slip plane normal \boldsymbol{m} in the \boldsymbol{e}_{3} direction, i.e. $m_{3}=\boldsymbol{m} \cdot \boldsymbol{e}_{3}=\cos \phi$ (see figure). Similarly, $s_{3}=s \cdot e_{3}=\cos \lambda$. Hence,

$$
\tau_{R}=\sigma \cos \phi \cos \lambda
$$

